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The subharmonic transition process of a flat-plate boundary layer at a free-stream 
Mach number of M ,  = 4.5 and a Reynolds number of 10000 based on free- 
stream velocity and initial displacement thickness is investigated by direct numerical 
simulation up to the beginning of turbulence. A second-mode instability superimposed 
with random noise of low amplitude is forced initially. The secondary subharmonic 
instability evolves from the noise in accordance with theory and leads to a staggered 
A-vortex pattern. Finite-amplitude A-vortices initiate the build-up of detached high- 
shear layers below and above the critical layer. The detached shear-layer generation 
and break-up are confined to the relative-subsonic part of the boundary layer. The 
breakdown to turbulence can be separated into two phases, the first being the break- 
up of the lower shear layer and the second being the break-up of the upper shear 
layer. Four levels of subsequent roll-up of the lower, Y-shaped shear layer have been 
observed, leading to new vortical structures which are unknown from transition at 
low Mach numbers. The upper shear layer behaviour is similar to that of the well- 
known high-shear layer in incompressible boundary-layer transition. It is concluded 
that, as in incompressible flow, turbulence is generated via a cascade of vortices and 
detached shear layers with successively smaller scales. The different phases of shear- 
layer break-up are also reflected in the evolution of averaged quantities. A strong 
decrease of the shape factor, as well as an increase of the skin friction coefficient, 
and a gradual loss of spanwise symmetry indicate the final breakdown to turbulence, 
where the mean velocity and temperature profiles approach those measured in fully 
turbulent flow. 

1. Introduction 
For incompressible flows detailed experiments, theoretical efforts and numerical 

simulations have led to a basic understanding of the boundary-layer transition pro- 
cess. In a low-disturbance environment the initial stages can essentially be treated by 
linearized theories (Mack 1984; Herbert 1988). At higher Mach numbers the linear 
stability characteristics become substantially more complex compared to incompress- 
ible flow (Mack 1984, 1990; Ng & Erlebacher 1992). One observes that the most 
unstable linear eigenmodes at low supersonic Mach numbers are oblique vortical 
modes. These give rise to a particular transition mechanism, called the oblique-mode 
breakdown, where nonlinear interactions take over without a secondary instability 
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mechanism following the primary one. It was first identified by numerical simu- 
lations of Thumm, Wolz & Fasel 1990, and the late stages of breakdown have 
been investigated by Sandham, Adams & Kleiser (1994). Experimental evidence for 
the dominance of oblique linear eigenmodes at low supersonic Mach numbers has 
been given by Kosinov, Maslow & Shevelkov (1990). At Mach numbers beyond a 
threshold of about M ,  = 3 a two-dimensional second mode or Mack mode (Mack 
1984), which is of mixed vortical-acoustic type and moves with a low subsonic ve- 
locity relative to the freestream, becomes most unstable. Experimental evidence for 
the existence of this mode was first given by Kendall (1967), though its significance 
in initiating laminar turbulent breakdown is controversial. Experimental results by 
Stetson & Kimmel (1992) do not seem to indicate that the transition, even at high 
Mach numbers (2 6.8), is initiated by a subharmonic mechanism which is supposed 
to follow a dominant two-dimensional second-mode instability. Simulations by Guo, 
Kleiser & Adams (1996), however, show that in a favourable environment subhar- 
monic transition at high supersonic Mach numbers (e 4.5) is not precluded. Other 
possible scenarios at this Mach number range are the oblique mode breakdown 
following a first eigenmode (Adams & Kleiser 199327) or a breakdown following an 
oblique second eigenmode as suggested by Stetson & Kimmel (1992) and recently 
investigated numerically by Pruett & Chang (1995). 

Owing to the enormous difficulties of controlled experiments for high-supersonic 
flows hardly any experimental results revealing detailed flow phenomena at the non- 
linear stages of supersonic transition have been published. Instead, they have been 
mostly restricted to the domain of linear disturbance growth. A considerable amount 
of data for different configurations is available for fully turbulent flow (for a compila- 
tion see e.g. Fernholz & Finley 1977). Often, however, experiments even qualitatively 
disagree with respect to correlations such as RMS (root-mean-square) profiles of 
velocity and temperature fluctuations or Reynolds stresses. Specific correlations ap- 
pearing in the compressible turbulence closure problem such as the pressure-dilatation 
correlation or the compressible dissipation (Sarkar et al. 1991 ; Zeman 1990) may not 
be obtainable by present experimental techniques. Assumptions about the effect of 
compressibility presently used in the modelling of compressibility effects in turbu- 
lent flows are mainly extrapolations from isotropic decaying and homogeneous shear 
turbulence which still need to be verified or qualified for inhomogeneous flows. 

Only a few experimental investigations have considered the evolution of organized 
structures in turbulent compressible boundary layers. Spina & Smits (1987), using 
conditional sampling and correlations of mass flux and pressure, found structures 
in a turbulent boundary layer at a Mach number of 3 which extend to about 30% 
of the boundary-layer thickness and possess small spanwise but large streamwise 
scales. The inclination of these structures changes from about 15" near the wall to 
about 45" in the mid-region of the boundary-layer and up to about 70" to 90" in 
the outer region. Similar results have been obtained by Owen & Horstman (1972) 
for a turbulent boundary layer at Mach 7.2. No similar experimental studies are 
known for transitional high-speed boundary layers. Using direct numerical simulation 
data Sandham & Kleiser (1992) identified a mechanism for generation of near-wall 
turbulence for incompressible channel flow. Its basic ingredients are streamwise 
vortices and detached shear layers which are generated in a chain-like manner with 
successively smaller scales until the viscous limit is reached. One open question, to 
be addressed in the present paper, has been whether a similar mechanism is valid at 
high Mach number. 

Owing to this lack of experimental data there is a strong interest in numerical 



Subharmonic transition at Mach number 4.5 303 

simulation techniques for studying transition. Both temporal (Erlebacher & Hussaini 
1990; Adams, Sandham & Kleiser 1992, Pruett & Zang 1992; Adams & Kleiser 
1993a, b)  and spatial (Thumm et al. 1990, Fasel, Thumm & Bestek 1993; Pruett 
& Chang 1993, 1995; EiDler & Bestek 1993; Pruett et al. 1995) simulation models 
have been successfully applied to moderate and high Mach number flows. Pruett & 
Zang (1992) investigated the subharmonic transition of a boundary layer on a hollow 
cylinder at flow parameters close to those of the present study. 

The closest realization of a transition experiment by numerical simulation is the 
so-called spatial model. In this model, the Navier-Stokes equations are solved subject 
to suitable inflow and outflow boundary conditions and no a-priori assumptions 
about the mean flow are necessary. If a perturbation is forced in accordance with 
an experiment the instability evolves equivalently. In particular, mean-flow non- 
parallelity is accounted for. Following the regime of linear and weakly nonlinear 
interactions, strongly nonlinear interactions take place at the late stages of transition, 
within a short streamwise region. During this stage non-parallel effects of the mean 
flow can be neglected. This particular stage of transition immediately before the 
onset of turbulence is investigated in the present paper. It cannot be studied by 
other means than experiments or direct numerical simulations owing to the strong 
interaction between mean flow and perturbations. A temporal simulation method 
comprises a region just long enough to represent all significant mode interactions. 
Instead of imposing inflow and outflow boundary conditions, the flow is assumed to 
be streamwise periodic with a certain fundamental wavelength. The corresponding 
instability is temporal (Mack 1984) and the flow evolves in time instead of space. 
In a temporal simulation as used here, the fundamental instability mechanism needs 
to be selected a priori. Note, however, that a significant improvement in matching a 
temporal model to a spatial instability can be obtained by including mean-flow non- 
parallelity effects to a certain degree (Guo et al. 1996; Guo, Adams & Kleiser 1995). 

In the present paper we investigate the late stages of transition in a flat-plate 
boundary layer following a subharmonic instability at a free-stream Mach number 
of M ,  = 4.5 and a Reynolds number of 10000 based on the initial displacement 
thickness. The subharmonic transition mechanism is well known in incompressible 
flow (Herbert 1988). For high Mach number boundary layer the existence of a 
subharmonic secondary instability following a two-dimensional second mode has been 
shown by Ng & Erlebacher (1992). It is stressed that the subharmonic transition 
following a second mode is a genuine compressible phenomenon and so is the 
following breakdown. In contrast to fully developed turbulence, which is statistically 
independent of its transition history, compressibility cannot be expressed in terms of 
isolated or parameterizable events. In this paper emphasis is placed on documentation 
and analysis of physical phenomena during transition in terms of the evolution of 
organized structures. The basis of the investigation are numerical data obtained by a 
temporal direct simulation. A concise description of the numerical simulation method 
is given in 92. The simulation results are presented in $3. In 94 the findings are 
discussed and conclusions are given in 95. 

2. Simulation method 
2.1. Mathematical model 

The problem considered is that of transition to turbulence in the boundary layer 
along a flat plate. The temporal simulation approach is adopted, allowing the use 
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FIGURE 1. Sketch of the computational domain. 

of periodic boundary conditions in the streamwise and spanwise directions x and 
y. The integration domain has the extents L, in the streamwise and L, in the 
spanwise direction and is truncated at L, in the wall-normal direction. A sketch of 
the integration domain is shown in figure 1, together with the Cartesian coordinate 
system {x , y , z } .  For ease of notation in the following an index notation (with 
summation convention) is used, where the subscripts 1, 2 and 3 correspond to the 
coordinates x, y and z ,  respectively. 

The basic equations to be solved are the three-dimensional unsteady compressible 
Navier-Stokes equations in conservation form. The basic flow is imposed by the 
standard technique of adding a forcing term (see below), which in the present 
simulation is kept constant in time as the simulation is done in a frame of rest. A 
perfect gas with specific heat ratio IC = 1.4 is assumed. In the following, dimensional 
quantities are marked by an asterisk. The non-dimensionalization is done by 

Here ui denotes the velocity components, p the density, p the pressure and ET the 
total energy to be defined below. The time t is non-dimensionalized by UL/6; ,  where 
the reference length S;  is taken as the displacement thickness of the undisturbed 
laminar basic flow. The governing equations can be cast in non-dimensional form as 
(e.g. Adams 1993) 

with the total energy ET = p / ( ~  - 1) + uiui/2 and for i, j = 1,2,3. The shear-stress 
tensor obeying Newton’s relation and Stokes’ hypothesis is given by 
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and the heat flux vector is 

P a T  qi = - 
(IC - 1)M;PrRe (2.5) 

The Reynolds number of the flow is defined as Re = U & ~ ; / V ; ,  and the Prandtl number 
Pr  = c&>/A>, where cp is the specific enthalpy and 1 is the heat conductivity. The 
Prandtl number is set to Pr = 0.7. The dynamic viscosity ,u is an explicit function of 
the temperature only and is assumed to obey Sutherland’s law 

1+s 
p(T) = T3I2- 

T + S ’  

where S = 110.4KlT;. As an additional algebraic relation the perfect-gas relation 

2 K M , ~  = pT 

is used. Terms Zi in equations (2.1)-(2.3) are the components of a forcing vector, 
given by 

Z 3  = Z 4  =0,  

where t = x + CTt is the downstream coordinate in a fixed frame of reference, while 
the integration domain is moving downstream with some velocity cT (as mentioned 
before, we choose cT = 0 in the present work). The basic flow profiles are denoted by 
U ( z )  (streamwise velocity), O ( z )  (temperature), 9 ( z )  (density) and A(@) (viscosity). 

Some explanation for the use of a forcing term is in order. We are interested in 
the nonlinear evolution of perturbations in a given laminar boundary layer. Thus 
we need to find a mathematical model which describes the perturbation evolution 
while keeping the basic flow fixed. Note that the mean flow, however, is allowed to 
evolve due to nonlinear interactions between perturbation modes. One possibility is 
given by explicitly splitting the flow variables into a basic flow and a perturbation 
and to derive a set of differential equations for the perturbations. A more con- 
cise way has been proposed by Spalart & Yang (1987) and has been used e.g. by 
Erlebacher & Hussaini (1990) and others for compressible flow. In order to cancel 
out the residual generated when the given basic flow quantities are inserted into 
the Navier-Stokes equations, a source term (which may in general vary in time and 
space) is added to the Navier-Stokes equations. The validity of this approach may 
become evident from the following brief analysis. We consider for this purpose the 
Navier-Stokes equations for a one-dimensional flow and write them as 

au - al: 
- - -+z,  at ax 
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I -  F = [  - P U  
-PU -p++xx 

- 4 E  + P )  - 4x + uzxx 
(2.10) 

By separating zeroth- and higher-order terms F may be written as (the subscript 0 
indicates basic flow quantities) F = Fo + F ’  where 

I -PoU’ 
-2pouou’ - 2p’uou’ - p’ui - p’u’2 - p’ + z;, F ‘ =  [ 

-u’(Eo + P O )  - uo(E’ + p’)  - u’(E’ + p’ )  - 4; + U’ZXJO + 
By defining 2 := -dFo/dx equation (2.9) becomes the full nonlinear perturbation 
equation for a given steady laminar basic flow UO. In the case of an unsteady basic 
flow due to cT # 0, the forcing is defined by Z := -aFo/dx + cTdUo/dc. We are 
mainly interested in the nonlinear interactions of all perturbation modes. This regime 
extends only over a relatively short streamwise section, where it is reasonable for our 
purpose to let cT = 0 and the boundary layer be locally parallel. Certain effects of 
boundary-layer growth may be considered by moving the reference frame ( cT  # 0). 
However, contrary to incompressible flow (Spalart & Yang 1987), it turns out that 
(2.8) does not satisfactorily take into account the effect of boundary-layer growth 
with respect to the linear instability modes. This problem has been addressed in a 
separate study and an extended form of equation (2.8) has been proposed, which takes 
into account the non-parallelity of the basic flow and linear perturbations within the 
temporal simulation method (Guo et al. 1995, 1996). Note that simplified models 
such as nonlinear PSEs (parabolized stability equations) (e.g. Pruett & Chang 1993) 
are not capable of accounting for all interactions. 

As initial condition, the laminar basic flow is superimposed with eigensolutions of 
the linear stability equations and, additionally or alternatively, random fluctuations. 
The basic flow is given by the compressible laminar boundary-layer similarity equa- 
tions for an adiabatic wall, also employing Sutherland’s viscosity law (Stewartson 
1964, pp. 33-60). The similarity solution is obtained numerically by a shooting 
method (Adams 1993). In the simulation, periodic boundary conditions are enforced 
in the streamwise and the spanwise directions, and a no-slip condition is used at 
the wall. The wall is assumed to be isothermal with respect to the fluctuations. At 
the upper artificial boundary z = L, time-dependent non-reflecting boundary condi- 
tions adapted from Thompson (1987) are used. For details on initial and boundary 
conditions the reader is referred to Adams (1993). 

2.2. Numerical method 
The periodic streamwise and spanwise directions x and y are treated by using Fourier 
expansions. In these directions the pseudo-spectral Fourier-collocation approach is 
employed (see Canuto et al., 1988). In the wall-normal direction z a compact finite- 
difference scheme (Lele 1992) is used, which is of sixth order at inner points and has 
third- to fourth order boundary closures for the first- and second-derivative operators. 
The (Lax- and asymptotic) stability of the scheme was proved (Adams 1993) for the 
linear convective and the linear diffusive limits using a normal mode and an eigenvalue 
analysis similar to Carpenter, Gottlieb & Abarbanel(l993). For time advancement an 
explicit third-order compact-storage Runge-Kutta scheme (Wray 1986) is used. An 
analytic mapping function between the evenly spaced computational interval [0,1] 
and the physical wall-normal interval [O,zmax] is used (Adams 1993). This allows 
for a condensation of grid points near the wall and some plane z, E [O,zmax], which 
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FIGURE 2. Amplitude functions: DNS solution and linear eigensolution (symbols). 

is chosen to be the critical layer in our simulation. The mapping parameters are 
optimized for resolving linear instability waves and are kept constant throughout a 
simulation. 

The code has been validated by computing the growth rates and shapes of linear 
eigenfunctions. Two classes of tests were made: (a)  tests where eigenfunctions from 
linear stability analysis were used as the initial disturbances, and (b)  tests where linear 
instabilities were allowed to grow from random background disturbances. In all cases 
very good agreement with linear theory was obtained. As an example, a comparison 
of the amplitude distributions of a second-mode disturbance at M ,  = 4.5, Re = 10000 
and wavenumbers a = 2.25 (streamwise) and p = 0 (spanwise) is shown in figure 2. 
The initial noise level was A = lo-'. The correct eigenfunctions were extracted from 
the numerical solution at t = 305.28. The difference between the numerical simulation 
results and the results from a numerical solution of the linear stability equations is less 
than 0.5%. The phase distributions are also in excellent agreement (Adams 1993). The 
solutions of the compressible linear stability equations were obtained by a spectral 
collocation method (Simen & Dallmann 1992). A more detailed description of the 
mathematical model, the numerical method, validation procedure and test results can 
be found in Adams et al. (1992) and Adams (1993). 

3. Simulation results 
The subject of investigation is the subharmonic route to turbulence in a M ,  = 

4.5 boundary layer when the secondary instability grows from background noise. 
Emphasis is placed on the flow-field structure at nonlinear stages. Experimental data 
covering the transition regime for a high-speed flat-plate boundary layer are still 
not available, although some progress is being made for cone geometries (Stetson 
& Kimmel 1992, 1993). The flow parameters were chosen to match the secondary 
instability investigations of Ng & Erlebacher (1992) and are shown in table 1. These 
parameters resemble in essence the experimental setup of Kendall (1967). 

A second-mode primary instability wave near branch I1 of the neutral curve with 
a streamwise wavenumber a = 2.52 is excited initially with an amplitude of 0.4% 
with respect to the maximum streamwise velocity fluctuation (corresponding to a 6% 
maximum temperature fluctuation). Ng & Erlebacher (1992) found no evidence of 
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Re50 9.1331 x lo5 
T i  61.15 K 
Tw 4.38 
60 1.41 
L X  4.9867 
LY 2.9920 
Lz 15.0 

TABLE 1. Simulation parameters. 

a fundamental secondary instability at these parameters. The present DNS results 
confirm this observation, since the (2, f1)-modes remain at low amplitudes during 
the phases of linear and weakly nonlinear interactions to be defined below, figure 3. 
Since the secondary instability is initiated by a finite-amplitude primary wave, it is 
reasonable to choose a primary wave near branch I1 where its amplitude due to linear 
amplification in a spatially evolving flow would be a maximum. The most unstable 
subharmonic secondary instability wave with wavenumbers a = 1.26 (streamwise) 
and p = 2.1 (spanwise) is allowed to grow from random noise superimposed with an 
amplitude of No spanwise symmetry is forced. Initially a computational mesh 
of 12 x 12 x 101 gridpoints is used, which is refined later up to 128 x 128 x 191 points. 
The simulation consumed about 140 hours of CPU time on a CRAY Y-MP C90. 
The code is completely vectorized and runs at about 500 MFLOPS using one Y-MP 
C90 processor. The present simulation was halted because of a CPU-time limitation 
and a need to rearrange the grid point distribution in the wall-normal coordinate 
taking into account that at the final stage the boundary layer has thickened by about 
a factor of 2. However, the simulation has been continued well into fully developed 
turbulence by Guo et al. (1994). 

3.1. Linear and nonlinear disturbance evolution. 
For an assessment of the disturbance growth a mode energy E(k,, k ,  ; t )  is used which 
is defined as the magnitude of the Fourier-transformed velocity vector integrated over 
Z :  

(the dagger + denotes a complex conjugate). An overview of the temporal development 
of the leading modes and some higher harmonics is obtained from figures 3 and 4. 
As can be seen from figure 3, the primary wave, mode (2,0), grows initially with its 
linear growth rate mi = 0.0028 for about 100 periods T, = 27c/o, = 2.7646, where 
or = 2.2727 is the primary wave frequency. At about 25T, the secondary instability 
modes (k, ,+l)  start to evolve from background noise. At this time the amplitude of 
the primary wave has increased up to about ukax = 0.005 (the double prime refers 
to a deviation from (x,y)-plane averages). The secondary wave growth rate at this 
primary wave amplitude, calculated from secondary instability theory, is = 0.0292 
(secondary instability data by C.D. Pruett, private communication). Although several 
simplifying assumptions of the secondary theory (e.g. the shape assumption, frozen 
primary wave amplitude) are not enforced in the DNS, this value is close to the 
growth rate found in the simulation between 195 d t < 270, which is 0.029 & 0.001. 
The frequency of the subharmonic mode is 1.35 f 0.002 for the (1, 1)-mode, which 
is also close to o r /2  from theory. Note that the reference frame of the simulation 
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FIGURE 3. Temporal evolution of the mode energy for selected modes. 

is at rest, so that the secondary frequency does not vanish. Primary and secondary 
modes travel downstream with a common velocity. This phase-locking yields the most 
effective environment for wave interaction. 

After about 85 T, the correct secondary eigenfunctions can be extracted from 
the flow field, figure 5. A comparison with the results of the secondary instability 
theory for a primary wave amplitude of 0.5% demonstrates that the distributions of 
amplitude and phase (not shown) of the eigenfunctions agree well. The eigenfunctions 
have been normalized by the temperature maximum. About 80T, after the onset 
of the subharmonic wave growth weakly nonlinear interactions take place which 
satisfy the conditions of nonlinear resonance (Drazin & Reid 1981, pp. 392-398). 
A strongly nonlinear interaction between the dominant modes sets in later at about 
130T,, where the mode energy of the (O,2)-mode overtakes the (1, 1)-mode. The 
(0, f2)-modes remain dominant during breakdown. 

The rapid fill-up of the mode-energy spectrum is evident from a series of carpet 
plots in figure 6. At t = 0 the basic flow, the (0,O)-mode, and the primary wave, the 
(2,O)-mode, are visible standing out above the background noise, figure 6(a). First 
the spectrum fills up due to weakly nonlinear mode interactions. Thus only modes 
with an even sum k, + k, grow significantly, yielding a typical checkerboard nature 
of the spectrum, figure 6(b). Strongly nonlinear interactions of the ‘even’ modes 
lead to a strong increase of the global energy level, figure 6(c). After about 130T, 
modes with an odd sum k ,  + k, begin to grow at a nearly common growth rate, 
figure 4, which can be estimated to be about d(lnE)/dt 2: 0.16. This is about 
5.5 times larger than the secondary-wave growth rate. These ‘odd’ modes are not 
excited by nonlinear interactions among the even modes. However, with the onset of 
strongly nonlinear interactions accompanied by the evolution of pronounced vortex 
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FIGURE 4. Temporal evolution of mode energy of even and odd modes at late stages. 
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FIGURE 5. Comparison of secondary wave amplitude functions between secondary instability 
theory and DNS, t = 235.16. (a) u, v, w ( b )  T , p .  

and shear-layer structures (see subsequent sections), the odd modes become highly 
amplified and grow rapidly from background noise and round-off error level. 

At the final state of the present simulation the even modes are saturated at an 
energy level which is nearly attained by the odd modes, figure 4. Thus the spectrum 
has lost its checkerboard nature and is close to a turbulent one, figure 6(d ) .  The energy 
spectrum is used to estimate the resolution requirements throughout the simulation. 
Note that even at the final stages the spectrum decays by at least seven orders of 
magnitude, so that the present resolution is considered to be sufficient. 
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FIGURE 6. Carpet plots of mode energy at different times. (a) t = 0, ( b )  t = 368.13, 
( c )  t = 424.48, ( d )  t = 440.60. 

3.2. Formation of A-vortices 
In a frame of reference moving with the phase velocity the primary wave appears 
as a set of spanwise vortices located near the critical layer shown in figure 7 in 
terms of iso-pressure surfaces. The low-pressure cores near the critical layer represent 
the spanwise vortices, which are slightly perturbed by the imposed noise (the noise 
amplitude is modulated by the function z2exp( -z2), so that the perturbation near 
the wall is invisibly small). The low-pressure regions near the wall, shifted by half a 
wavelength relative to the critical-layer perturbation vortices, are due to the pressure 
wave reflection between the wall and the relative sonic layer at z = 0.55 where the 
convective Mach number M, := M,(u - C P ~ ~ ~ ~ ) / T ~ / ~  equals -1. A schematic of this 
process, suggested by Morkovin, can be found in Mack (1990). A visualization of the 
second-mode wave is provided in figure 8. For this purpose the laminar mean flow has 
been superimposed with a second-mode wave of an amplitude of uhx = 5%. At the 
sonic layer ( z  = 0.55) the second-mode wave changes its character from an acoustic 
to a vorticity mode. The sonic layer experiences a sinuous perturbation by the small 
vortices near the critical layer at z ,  = 1.08. Thus a compression wave propagates 
from each local minimum of the relative sonic u-isotaches to the wall and is reflected 
back and forth following the reflection laws in supersonic flows. 

In the relative subsonic region above the sonic layer the secondary instability 
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FIGURE 7. p-iso-surfaces ( p  = 0.03515) and vortex lines at t = 0. Data duplicated periodically in the 
streamwise and spanwise directions. 

deforms the primary-wave spanwise vortices and a staggered pattern of A-vortices 
emerges, as visualized in figure 9. Since the primary wave travels downstream at about 
90% free-stream velocity the critical layer is located near the laminar boundary-layer 
edge (60 = 1.41, based on 99.9% free-stream velocity). This region possesses low 
mean shear and is decoupled from wall effects by the sonic layer. Thus low-subsonic 
inviscid effects may become responsible for the primary-vortex deformation. 

Self-induction moves the A-vortex tips upward and the vortex tails downward. 
Thus by mean shear the downstream velocity difference along a vortex leg increases 
and the vortex is stretched considerably in the streamwise direction, figure 10. Also, 
presumably by interaction of inductive deformation and mean shear, the A-vortex 
becomes S-shaped and twisted. Just below the A-vortex legs pronounced high- and 
low-velocity streaks in the streamwise velocity appear, which are represented by the 
(0,2)-mode in spectral space. 

A remark about visualization of large-scale vortical structures is in order. Vortices 
are basically identified herein by iso-surfaces of low pressure, as done e.g. by Sandham 
& Reynolds (1991). Low pressure turned out to be most useful for the identification 
of vortices, particularly at highly nonlinear stages. Other criteria, such as invariants 
of the rate-of-deformation tensor or its discriminant, were mostly not sharp enough. 
The same experience has been reported in Sandham & Kleiser (1992) and the reader 
is referred to this paper for a discussion of the different criteria. A justification may 
come from compressible viscous vortex similarity solutions, where the vortex core is 
shown to possess a strong local pressure minimum (Mayer & Powell 1992). In the 
current work the coincidence of pressure minima and vortex cores has always been 
verified by an additional necessary criterion, usually that of a positive discriminant 
of the characteristic equation of the velocity-gradient tensor (Vollmers, Kreplin & 
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FIGURE 8. p-values, u-contours and velocity vectors due to a second-mode instability wave in a 
moving reference frame. do indicates the boundary-layer thickness, z,, the position of the critical 
layer and z, the sonic layer. 

Meier 1983). In cases where the vortex-axis was approximately known in advance, the 
equivalence of local pressure minima and vortex cores was also verified by examining 
streamlines of the cross-flow. These streamlines should appear as foci in a plane 
approximately perpendicular to the vortex axis. A comparison of these different 
criteria for locating the A-vortex is shown in figure 11. It is evident that pressure 
minima and cross-flow foci coincide, as do pressure minima and positive values of 
the discriminant D. 

3.3. Formation of Y-shaped shear layers 
An important new element in the transition process at this stage is shear layers 
generated by the A-vortices. Each shear layer is Y-shaped with the stalk pointing 
upstream and is located below and between two neighbouring A-vortices, as can be 
seen in figure 12. It is supposed that the Stuart mechanism (Stuart 1965) is responsible 
for the shear-layer generation. In the present configuration the lower shear layers 
do not build up at the wall but above the sonic layer. Using Stuart’s terminology 
the Y-shaped shear layer can be considered as the detached shear layer at the lower 
(‘valley’) position. It is found from corresponding iso-contour plots of spanwise 
vorticity and density (not shown) that the detached lower shear layers coincide with 
regions of high density variation. An upper (‘peak‘, Stuart 1965) shear layer also 
exists, but remains only weakly developed during the early phase of breakdown. This 
shear layer evolves in a peak plane which coincides with a plane of symmetry of the 
A-vortices and is located slightly above the laminar boundary-layer edge, figure 13(a). 
Thus it is in a region of weak mean shear and remains almost inactive during the 
first phase of breakdown. 

In figure 13(a), closer to the wall, a cut through the stalk of the Y-layer is visible 
from iso-contours of spanwise vorticity. Note that the detached shear-layer evolution 
is confined to the relative subsonic domain of the boundary layer, shown with dashed 
lines in figure 13(b). The presence of a detached shear layer below the A-vortex, but 
well above the wall, is different from boundary-layer transition in incompressible flow, 
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FIGURE 9. p-iso-surfaces ( p  = 0.03475) and vortex lines at t = 368.13. Data duplicated periodically 
in the streamwise and spanwise directions. 

FIGURE 10. p-iso-surfaces ( p  = 0.03237) and contours of streamwise velocity u in a plane z = 0.63 
at t = 392.70. Data duplicated periodically in the spanwise direction. 
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FIGURE 11. Cross-section at x = 1.56 and t = 392.70. (a) p-values and cross-flow streamlines, . .. . . 
(b )  p-contours and discriminant D. 
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FIGURE 12. p-iso-surfaces (p = 0.03237, dark) and w)  -iso-surfaces (w,  = 1.4, light) a t  t = 392.70. 
(a) Top view, ( h )  side view. 

where several roll-up stages of an upper detached shear layer can be observed but no 
lower shear layer (except for the near-wall vorticity layer) exists. An adaptation of 
the Stuart mechanism for compressible flow is discussed in 54. 

3.4. Shear-layer break-up 
The shear layers gain strength, and become elongated and distorted. In a peak plane 
the upper shear layer moves outwards and parts of the Y shear layer move towards 
the wall. Near the branch of the ‘Y’, which is located close to the centre of the 
corresponding A-vortex leg, the shear layer begins to roll up first. Close to the wall 
the spanwise vorticity lines up in streamwise streaks, two per secondary spanwise 
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FIGURE 13. wy- and M,-contours in a peak plane y = 1.45 at t = 392.70. 
(a) w,-contours, (b) M,-contours. 
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wavelength (Adams & Kleiser 1993~). The Y-shear-layer roll-up is connected with 
the formation of a new set of smaller-scale vortices. The axes of the A-vortices enclose 
an angle of about 45" with the streamwise direction and are inclined at about 15". 
The first roll-up vortices, denoted as L1, are oblique at about 40" and are not inclined. 
Their cores are still visible at t = 411.79 from the ellipsoidal low-pressure regions 
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FIGURE 14. p-iso-surfaces ( p  = 0.03) at t = 411.79, L2-roll-up of the Y-shear-layer. (a) Perspective, 
( b )  top-view, (c )  side-view. 

below the former centres of the corresponding A-vortex leg, for instance at x 2: 2.2, 
z N 0.5 in figure 14(c). Near the locations where the L1-vortices appear, the upstream 
parts of the A-vortices are torn off. They are swept towards the wall and become 
weak, so that they cease being visible as pronounced low-pressure cores in figure 14. 

When the tips of the Y-layer reach the preceding A-vortex the second roll-up L2 
is observed. It is evident from a shear-layer deflection near a local spanwise vorticity 
maximum in an (x,z)-plane at x N 1.3, z N 1.3 or x N 3.8, z N 1.3, figure 15(a). 
The second roll-up vortices are visible as horn-like iso-pressure surfaces, figure 14(a). 
Looking from above they form an inverted A-pattern with an enclosed angle of about 
80°, figure 14(b). Besides the upper shear layer, a second-generation shear layer is 
also visible in a peak plane which traverses the boundary layer at an inclination of 
about 45", figure 15(b). It is a result of low-speed fluid, lifted up by induced motion 
of the L1-vortices. 

Since high-speed fluid is convected towards the wall in the mean, the velocity 
difference between the bottom and top regions of the vortices decreases and the 
inclination of the vortical structures becomes larger, figure 16(b). In an off-peak plane 
fragments of the Y-shear-layer can be seen. The rolled-up tip has moved outwards 
and the remnants of the L1 roll-up are still visible as weak local a,-maxima at 
x 2: 1.2, z N 0.5 and x N 3.7, z N 0.5. Also new maxima are present now at x N 2.1, 
z N 0.6 and x N 4.6, z N 0.6. They indicate the third roll-up stage L3 which generates 
a new set of vortices below the A-vortices near the centre of their leg, figure 17. The 
remnants of the A-vortices now enclose an angle of 45" and are still inclined at about 
15". 

Similar to the L1-vortices, the L3-vortices again tear off an upstream-pointing part 
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FIGURE 15. o,-contours at t = 411.79, LZroll-up of the Y-shear-layer. 
(a) Off-peak plane at y = 0.70, ( b )  peak plane at y = 0. 

of the A-vortices. These fragments move towards the wall and build up a pair of 
counter-rotating streamwise-aligned vortices. Low-speed fluid convected upwards by 
these streamwise vortices generates a second-generation shear layer. From its roll- 
up a cylinder-shaped vortex LU1 results. The head-region of the former A-vortex 
resembles a smaller A-vortex. 

With the appearance of the first roll-up stage of the upper shear layer U1, visible 
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FIGURE 16. w,-contours at t = 416.55, LZroll-up of the Y-shear-layers. 
(a) Off-peak plane at y = 0.70, ( b )  peak plane at y = 0. 

from the coy-contours at a peak-plane at x 2: 3.5, y N 2.3 at figure 18(a), new 
structures of decreasing size can be observed within decreasing time intervals. The U1 
roll-up stage of the upper shear-layer is one of the last events which can be captured 
distinctly from the simulation data. At t = 427.48 it is visible as an arch-like vortex 
in x 2: 4, z 2: 2.3, figure 19. At this time the upper shear layer has undergone a 
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FIGURE 17. p-iso-surfaces ( p  = 0.028) at t = 416.55, L3-roll-up of the Y-shear-layer. (a) Perspective, 
(b)  top-view, ( c )  side-view. 

second roll-up generating a barrel-shaped vortex U2 at x 2: 2.7, z N 2.3. Also the 
LU1-vortices are visible, for instance at x 1: 0.8, z 2: 1.8. We note that arch- and 
barrel-shaped vortices are known to exist during the detached shear layer evolution in 
incompressible transition, see for example Sandham & Kleiser (1992). In a peak-plane, 
figure 18(a), a strong near-wall shear layer, stemming from the Y-layer fragments, 
has also built up. It is separated from the upper shear layer by a region of weak 
vorticity fluctuations. The break-up of the Y-layer, which is confined to a rather close 
vicinity of the off-peak planes, has now experienced the fourth roll-up stage. These 
L4-vortices show up as C-shaped structures, which extend from z N 1.2 to z N 1.8, 
in the middle region of the boundary layer, figure 19. The generation mechanism of 
the L4-vortices is quite similar to that of the L1- and L3-roll-ups. However, their 
shape is different since the shear layer has been wrapped around the small A-vortices 
originating from the head regions of the original A-vortices. 

The further development becomes increasingly complex, in part due to interactions 
of the Y-layer roll-up vortices Ln, formed at off-peak planes, and upper-shear-layer 
roll-up vortices Un, formed at peak planes, and cannot be described in detail here. 
However, a few remarks about some of the most prominent observations are in order. 
The arch-like vortices U1 from the first upper-shear-layer roll-up evolve into a hairpin 
vortex. The interactions between Ln-vortices and Un-vortices mentioned previously 
now cause a spreading of vorticity fluctuations between peak and off-peak planes 
such that significant fluctuations can also be observed in the middle region of a peak 
plane. 

Isolated hairpin vortices have the tendency to form vortex loops as has been shown 
by Moin, Leonard & Kim (1986). Nearly perfect vortex loops, which have obviously 
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FIGURE 18. a,-contours at t = 427.48, L4-roll-up of the Y-shear-layer, U1- and U2-roll-up of the 
upper shear-layer. (a) Peak plane at y = 1.45, ( b )  off-peak plane at y = 0.70. 

evolved from the former hairpin vortices, can be found at t = 440.46 in the outer 
region of the boundary layer at the peak planes, figure 20. The vorticity distribution 
in the peak and off-peak planes becomes more and more irregular, figure 21. In 
particular the initial streamwise periodicity due to the primary wave is entirely lost 
now in both the peak planes and the off-peak planes. The vortical structures near the 
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FIGURE 19. p-iso-surfaces ( p  = 0.03) at t = 427.48, L4-roll-up of the Y-shear-layer, U1- and 
U2-roll-up of the upper shear-layer. (a)  Perspective, (b)  top-view, (c )  side-view. 

wall are nearly aligned in the streamwise direction, figure 20. In the middle region of 
the boundary layer they are inclined at about 45" to 50" and in the outer region at 
70" to 90". This is agrees with the experimental results by Spina & Smits (1987) for 
a turbulent boundary layer at M ,  = 3. 

3.5. Spreading of the disturbances 
The secondary eigenfunctions possess amplitude maxima near the critical layer. The 
maximum fluctuations thus originate at the critical layer and spread both towards the 
wall and towards the boundary-layer edge. To illustrate this development, in figure 
22 the grid points with T ; ~  N 0.001 are traced with t, where zil = puiu',. The overbar 
denotes an average in the (x, y)-plane, the tilde a Favre-average (mass-weighted) in the 
(x, y)-plane and the primed quantities are fluctuations with respect to Favre-averaged 
mean quantities, u' = u - p/p. In the ( z ,  t)-plane a wedge evolves with an aperture 
of about 41 = 1.7" towards the wall and about $2 = 1" outwards. Obviously the 
wall-normal spreading sets in at the stage of the shear-layer build-up. With the 
onset of the Y-layer break-up the outward spreading angle increases to 43 N 2". 
The spreading wedge extends down to z N 0.028 which corresponds to z+ = 4.6 at 
t = 440.46, i.e. the edge of the viscous sublayer when calculated in instantaneous wall 
units. 

By tracing the vortices in the peak and off-peak planes through their low-pressure 
cores it is found that the vortices in the upper part of the boundary layer move 
downstream with a velocity of c,, = 0.85 which corresponds to 94% primary-wave 
phase velocity. As far as they can be captured accurately enough, this is also true 
for the Y-shear-layer roll-up vortices in the lower part of the boundary layer. In the 
later stages the streamwise vortices in the lower part of the boundary layer become 
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FIGURE 20. p-iso-surfaces (p = 0.03) at t = 440.46. (a) Perspective, (b) top-view, (c) side-view. 

increasingly difficult to define since their pressure minima in (x, z)-planes become 
broader. The velocity of the outward motion is different for the Ln  and U n  vortices. 
While the Y-layer roll-up vortices Ln move upward and downward respectively at 
about c,, = 0.015, depending on whether their initial position is above or below the 
critical layer, the U n  and LU1 vortices move significantly faster outward at about 
c,, = 0.05. It can be concluded that the fluctuations spread due to the wall-normal 
propagation of the vortical structures. 

3.6. Global evolution 
During the final stage of the simulation the spanwise symmetry, which has formed 
in the secondary instability stage, is lost gradually. A measure C, of the spanwise 
asymmetry can be defined by the Euclidean norm of the mode-energy differences of 
corresponding spanwise harmonics (Adams 1993) 

] lI2 

N1/2-1 N2/2-1 c c [E(kl,k2) -E(k1,N2 -k2)I2 

The spanwise asymmetry grows non-monotonically in time with a slightly increasing 
frequency, figure 23. This non-monotonic behaviour can be traced back to the 
asymmetric distribution of the initial background disturbances. Figure 24 shows the 
evolution of the mode energy of the mode (1,l) and its conjugate mode (1, -l), which 
are the left- and right-going subharmonic waves. It is evident that these modes are 
phase-shifted by about n when they begin to grow from the noise level. The amplitude 
modulation caused by this phase shift reduces strongly with increasing time. After 
about t 2: 200 the (l,+l)-modes are practically identical with the subharmonic 
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FIGURE 21. w,-contours at t = 440.46. (a) Peak plane at y = 1.45, (b) off-peak plane at y = 0.70. 

instability modes. Nevertheless this amplitude modulation, which will be identified 
below as a superposition of damped waves upon the subharmonic waves, dominates 
the evolution of the spanwise asymmetry during the linear and the weakly nonlinear 
stages. Also it is noted that streamwise-averaged modes, for example the (0,f2)- 
modes, are strictly symmetric. A simple model based on the concept of 'priming 
disturbances' of Kachanov & Levchenko (1984), adapted to the present temporal 
instability problem, can be formulated. It yields the following simple approximation 
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for the temporal behaviour of the (1, +l)-mode amplitudes: 

h (3.2) 
Al,-1 - - ;ioecFteiait (1  + extei($'+wl,-l) ) I  1 . 

Al,l = ;ioegrteioit (1 + extei($t+wl,l) 

The parameters in (3.2) can be estimated from the simulation as crr = 0.028, 4 = 0.061, 
y1,1 = -+IT, tp1,-1 = -in, x = -0.008. The damping x reduces the influence of 
the amplitude modulation term on the right-hand side with increasing time. The 
asymmetry evolution for the subharmonic modes resulting from this simplified model 
is in qualitative agreement with the Z,-evolution of the simulation results, figure 23. 

The well-known increase of the skin friction coefficient 

the decrease of the Stanton number 
SiW 

Pw(Tw - ~ m )  
S t  = 

and of the shape factor 
6 
6 2  

H='  

(d2 is the compressible momentum thickness), are observed in the final stage of our 
simulation, figure 25. During linear and nonlinear stages these quantities remain 
close to their laminar values. The time at which Cj, S t  and H12 change dramatically 
coincides with the build-up of the primary shear-layer structures. Note that both the 
skin friction coefficient and the Stanton number overshoot the turbulent values (see 
Guo et al. 1994a). This behaviour is quite general to boundary-layer transition. 

Temporal averages in the experiment correspond to streamwise (x) or plane (x ,y )  
averages of the respective flow quantities in our computation. For a compressible flow 
Favre averages are preferable. Figure 26 shows a set of streamwise Favre-averaged 
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FIGURE 23. Temporal evolution of spanwise asymmetry, and comparison with a simplified model. 

RMS-fluctuation distributions of the temperature. Initially the two-dimensional 
primary wave amplitude distribution is evident, figure 26(a). The secondary instability 
leads to a three-dimensional deformation near the critical layer, figure 26(b). The 
streamwise average over the full box length yields a double-peak structure near the 
critical layer typical of the subharmonic staggered A-vortex pattern. Along with the 
break-up of the Y-shear-layer the largest fluctuations can be observed, figure 26(c). 
The break-up of the upper shear layer causes a rapid spreading of fluctuations into 
the outer part of the boundary layer, figure 26(d). 

Unfortunately there appear to be no experimental data available for the transition 
regime that could be compared with the present simulation results. However, Favre- 
averaged profiles of the final stage of the present simulation may be compared with 
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experimental results for a turbulent boundary layer, if M ,  and T, are comparable 
and Tw is not much different. This is the case for experiments by Mabey, Meier & 
Sawyer, documented in Fernholz & Finley (1977) (series 74021801), at M ,  = 4.52, 
Res, = 89398, T& = 61.81 K, Tw = 4.78. The experimental wall temperature is larger 
than the adiabatic one. Starting from the laminar profiles, the transitional mean 
velocity and temperature profiles evolve towards the experimental results, figure 27(a) 
and figure 28(a). The distributions of the corresponding RMS-fluctuations, figures 
27(b) and 28(b), still differ from expected turbulent profiles in that two local maxima 
of (u”)1/2 and (T’)1/2 are visible (see also Guo et al. 1995). The upper one is caused 
by the upper-shear-layer break-up and presumably disappears when this process is 
complete. The lower one is expected in a fully turbulent - profile and indicates the 
onset of near-wall turbulence. The Reynolds stresses pu’u’, figure 29(a), and pu’w’, 
figure 29(b), and the Reynolds heat-flux pw’T’, figure 30, show a similar behaviour. 
In particular, the spreading of the fluctuations from the critical layer is evident. It is 
interesting to note the sharp change of the RMS-profiles from the inner to the outer 
flow at the superlayer at about z II 3 in the mean. 

- 

4. Discussion 
The existence of a subharmonic temporal secondary instability is confirmed by the 

present numerical simulation. In agreement with the results of secondary instability 
theory the existence of a fundamental resonance can be excluded under the present 
conditions. The interpretation of experimental results by Stetson & Kimmel (1993) 
raises questions as to whether the subharmonic transition process is of significance 
in their experiments. Despite a clearly dominant second-mode primary instability no 
evidence for a subharmonic was found. Owing to a lack of three-dimensional data it 
unfortunately remains unclear how three-dimensional fluctuations are initiated, which 
are the necessary prerequisite to trigger laminar-turbulent breakdown. Candidates 
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FIGURE 26. Carpet plots of the streamwise-averaged temperature fluctuations (T'")'''. (a) t = 0, 
(b)  t = 368.13, (c) t = 407.05, ( d )  t = 440.60. 

are the oblique-wave breakdown at high Mach number, where nonlinear interactions 
immediately follow the primary instability (oblique first-mode waves) (Adams 1993 ; 
Adams & Kleiser 1993b), and three-dimensional second-mode waves, as remarked by 
Stetson & Kimmel(1993), which are not the most unstable ones but may nevertheless 
be significantly amplified. The latter have recently been studied numerically by 
Pruett & Chang (1995). 

Two characteristic primary vortex and shear-layer structures have been identified 
originating from the secondary wave. These appear in the staggered arrangement 
typical of the subharmonic type of transition. However, similar primary structures 
were also identified during the fundamental breakdown at the same flow parameters, 
though the further development appears to be different (Adams & Kleiser 1993b). 
At lower Mach numbers of about Mm = 2, Y-shaped shear layers have not been 
observed (Fasel et al. , 1993; Sandham et al. 1994). 

The mechanism responsible for the shear-layer growth is supposed to resemble that 
of Stuart (1965), adapted to supersonic flow. Stuart's main conclusion is that the mean 
shear is redistributed by a pair of streamwise vortices and detached shear layers form 
due to convection and stretching of spanwise vorticity. With respect to a reference 
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frame which moves downstream at about 90% of the free-stream velocity the flow 
can be separated into a near-wall relative-supersonic region and a relative-subsonic 
region above. Applying a Galileian transformation the flow becomes quasi-steady in 
a moving reference frame. The governing system of equations can be diagonalized 
along characteristic lines which are pointing solely upstream in the relative-supersonic 
part and both downstream and upstream in the relative-subsonic part. With respect 
to a linearized wave equation the quasi-steady flow is thus of hyperbolic type in the 
relative-supersonic part and of elliptic type in the relative subsonic part. Considering 
only a cross-plane (y,z), the whole region above the relative-sonic layer belongs to 
the region of influence of the streamwise vortices. However, the region between 
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the relative-sonic layer and the wall does not, and thus does not experience the 
cross-flow induced by the streamwise vortices. Thus in the relative-supersonic region 
the information about the cross-flow induced by the Stuart-vortex pair is convected 
downstream (with respect to the moving reference frame) along the characteristic 
curves and cannot build up a shear-layer structure in the cross-flow plane. In the 
relative-subsonic part, however, the influence of the cross-flow vortices accumulates 
and is responsible for the evolution of the observed shear layers. 

It is interesting to note the dominance of streamwise-averaged modes during early 
breakdown, in particular the (0, +2)-modes, which seems to be a feature almost inde- 
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pendent of the particular transition type. Once a pair of finite-amplitude oblique waves 
has evolved, modes with low streamwise wavenumbers are preferentially generated. 
An explanation of this behaviour has been suggested by Schmid & Henningson (1992) 
for incompressible channel flow. They point out that their findings may also be valid 
in more general cases. Pruett & Zang (1992) showed that the transition process 
can be inhibited by suppressing the (0, f2)-modes artificially, although the fraction 
of total fluctuation energy of these modes is rather small. In the present simu- 
lation these modes reach their maximum energy content with the first shear-layer 
roll-up at about t = 407. At this time the spanwise fluctuation activity is maxi- 
mum. 

The general picture that emerges regarding shear-layer instability and break-up 
in the present M ,  = 4.5 flow is the same as in Sandham & Kleiser (1992) for 
incompressible flow. They concluded that the instability and the break-up of the 
shear layers generated by the A-vortices are not a result of disturbance amplification 
from a stochastic background, but are deterministic and caused by large-amplitude 
perturbations at locations with are defined by the primary and secondary instability. 
The growth of the odd modes during the final stage of breakdown, explained in $3.1, 
indicates the ‘onset of unpredictability’ (Sandham & Kleiser 1992). 

Owen & Horstmann (1972) report values of the convection velocities of organized 
structures in a turbulent boundary layer at M ,  = 7.2 between 0.75U, and 0.9V,. 
These velocities are comparable to those found from our data. Also, in the exper- 
iment as well as in our simulation the streamwise convection velocities are nearly 
independent of the size of the structures. Spina & Smits (1987) gave experimental 
results for the inclination angles of organized (presumably vortical) structures in a 
turbulent boundary layer at M ,  = 3. These values have been found to agree well 
with the inclination of vortical structures at t = 440.46 of the present simulation, as 
noted in $3.4. An inclination close to the orientation of the mean shear rate yields 
the most effective way of energy conversion from the mean flow to fluctuations. 

We believe that the mechanisms investigated herein are more generally valid as 
long as the primary instability wave travels with a low subsonic velocity with respect 
to the free stream. This is the case for second-mode waves, which become increasingly 
important with increasing Mach number. For lower Mach numbers (e.g. M ,  = 2), 
where an oblique first-mode wave is the most unstable, there is a preference for more 
narrow streamwise vortices, and accordingly a different shear-layer structure evolves 
(e.g. Sandham et al. 1994). For an oblique mode transition at M ,  = 4.5 with a first 
mode as fundamental wave, a primary vortex and shear-layer structure similar to that 
in the subharmonic type of transition can be observed (Adams & Kleiser 1993b). A 
wider spanwise spacing and a stronger streamwise alignment may be responsible for 
the fact that no upper shear layer can be observed in this case. Depending on the 
Reynolds number and the disturbance excitation, at M ,  = 4.5 either the first- or the 
second-mode wave can be dominant, thus this might be a borderline case. Within a 
temporal instability model not taking into account the spatial growth of the laminar 
boundary layer, a prediction of the most likely transition mechanism is difficult. 
Recent temporal simulation results by Guo et al. (1995, 1996) show that by taking 
into account certain terms associated with the growth of the laminar boundary layer 
within a moving reference frame, spatial simulation results can be closely reproduced 
during the linear and early nonlinear stages. We emphasize that the particular 
transition process is selected during the primary linear instability evolution. Once it 
is selected, the subsequent nonlinear breakdown is believed to be captured accurately 
by a temporal simulation. 
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5. Conclusions 
In summary, the transition process in a M ,  = 4.5 flat-plate boundary layer was 

investigated by direct simulation using the temporal approach. Initially a two- 
dimensional second-mode primary-wave disturbance, which moves downstream with 
a phase speed close to the free-stream velocity, plus small random noise was su- 
perimposed on the laminar basic flow. It was found that a subharmonic secondary 
instability mode emerges from the background noise, in accordance with secondary 
stability theory. 

The subsequent nonlinear stages of the transition process have been analysed in 
detail up to the beginning of turbulence, and can be described as follows. The three- 
dimensional subharmonic instability deforms the primary vortices near the critical 
layer into a system of staggered A-vortices. This happens in the relative subsonic part 
of the boundary layer. The cross-flow motion induced by the A-vortices generates 
two types of shear layers. The first one, below the A-vortices and above the relative 
sonic layer, is Y-shaped and dominates the first phase of breakdown. The second 
one, which is located above the laminar boundary layer edge, behaves similarly to 
the ‘high-shear layer’ well-known from incompressible transition, is mainly restricted 
to a peak plane, and dominates the second phase of break-down. The break-up 
of the Y-shaped shear layer generates vortices below and above the critical layer, 
which split the former A-vortices into successively smaller parts. A common feature 
of these events is that they mostly appear near the centre of the remnants of the 
A-vortex legs, where these are torn off. Although they form (looking from above) 
A-like or inverse-A-like patterns, their general shape is quite different and has not 
been observed in lower Mach number flow so far. The shear-layer formation takes 
place in the relative subsonic part of the boundary layer and can be explained by the 
Stuart mechanism, adapted to compressible flow. 

The break-up of the upper-shear-layer takes place when the Y-shaped shear layer 
has gone through its break-up stages. It shows phenomena quite similar to those 
well-known from incompressible boundary layer transition, such as arch- and barrel- 
shaped vortices which evolve into hairpin vortices and vortex loops. The break-up 
of the Y-shaped shear layer is mainly confined to the off-peak planes while the 
upper-shear-layer break-up mainly happens at peak planes. The perturbation then 
spreads between the peak and off-peak planes due to an interaction of the vortical 
structures emerging from both events. 

The spanwise asymmetry which is seeded by the initial noise spectrum was found to 
grow throughout the linear and weakly nonlinear stages along with the subharmonic 
waves. The onset of a rapid growth of modes with an odd sum k,+k, of wavenumbers 
coincides with a more pronounced increase of spanwise asymmetry, indicating the 
onset of unpredictability in the flow. The different phases of shear-layer break-up 
are reflected in the evolution of averaged quantities. Mean velocity and temperature 
profiles evolve towards experimentally measured turbulent profiles. 

We would like to mention the fruitful cooperation with Dr N. D. Sandham, now 
at Queen Mary and Westfield College, London, during the earlier stage of this work. 
We are indebted to him for numerous helpful discussions and for valuable comments 
on a draft version of this paper. Dr C. D. Pruett (NASA LaRC) kindly provided 
secondary instability data. For the three-dimensional visualizations the graphics 
package COMADI by H. Vollmers (DLR) was used. The final part of the numerical 
simulation presented was made possible by a CPU-time grant of CRAY Research, 
Germany. We are grateful to Dr W. Oed (CRAY) for his assistance. 
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